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The problem of nonstationary magnetchydrodynamic flow of a viscous fluid in a half-space resulting from
the motion of an infinite plate has received much attention. In [1], for example, solutions are presented
for the case of isotropic conductivity, while in [2] a solution of the Rayleigh problem is offered for the
case of anisotropic conductivity. In these instances the fluid was assumed incompressible and uniform,
and the system of equations was found to be linear. In problems involving nonstationary flow of a gas in

a transverse magnetic field resulting from the deceleration of a high-velocity gas flow at the boundary of
a half-space or the motion of an infinite plate at supersonic speed relative to a stationary gas it becomes
necessary to take into account the compressibility of the gas and the temperature dependence of the con-
ductivity. It is then possible to have flows in which the gas becomes electrically conducting and begins to
interact with the magnetic field solely as a result of the increase in temperature due to viscous dissipa-
tion of energy. The magnetic field, interacting with the conducting gas, exerts an effect on the drag and
heat transfer to the surface of the plate. At sufficiently low gas pressures and strong magnetic fields 2 Hall
effect may be observed. The system of equations describing the motion of a compressible gas with vari-
able conductivity is essentially nonlinear. The present article is devoted to a study of such motions,

§ 1. Consider a nonstationary magnetohydrodynamic flow in which all the quantities depend on a single variable
y. From the equations of electrodynamics
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div H = 0, rot B = — ¢ —=, rot H= 4mnc1j ,

and Ohm's law, written in the form
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Here
H = (HJC? Hyy Hz)s E = (Ex, Ey, Ez)v j = (”x! j‘y’ ]Z)? v = (vw vys .vl)

are the vectors of the electric and magnetic fields, the electric current density, and the velocity of the medium, e and
m are the electron charge and mass, T is the mean time between collisions involving an electron and other particles,

and c is the speed of light in vacuum.

The equations of continuity, motion, and energy have the form®

2+ = (L.6)

*Since ion slip is not taken into account, the viscous stress tensor does not depend on the magnetic field, The de-
gree of jonization is assumed to be small; therefore the additional, anisotropy-conditioned terms in the heat flux vector

may be neglected [3].
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Here p is the density of the medium, p is pressure, T temperature, h enthalpy, p specific heat at constant pres-
sure, k and ¢ thermal conductivity and dynamic viscosity, and A the second bulk viscosity coefficient.

§ 2. Let the velocity of the gas in the half-space y > 0 above the surface of the plate y = 0 satisfy the initial and
boundary conditions
U=l ==C0onst at 0<y<Coo, t=<0, y==o00, £ >0,
v=0 at y=0,1t>0.

(2.1)

Conditions (2. 1) are realized for the motions of a viscous gas in the following cases: a plate moving at t < 0 with
the velocity of the surrounding uniform gas flow is instantaneously stopped at the instant t = 0; a uniform gas flow in the
half-space y > 0 instantaneously begins to be decelerated at the boundary y = 0 at the instant t = 0; at the instantt=0a
plate instantaneously acquires a velocity u,, relative to a stationary gas. The coordinate system is tied to the plate. The
velocity u,, is assumed to be much greater than the speed of sound in the gas at infinity.

Let a uniform external magnetic field H* be applied in the direction of the y axis. The interaction of the gas with
the field will be different depending on whether the magnetic field is tied to the plate (the plate "carries” the magnetic
field with it) or to the gas flow at infinity. If one draws the analogy with flow past bodies, then the first case corres-
ponds to motion of a vehicle carrying a magnetic system on board, and the second to the motion of a body in an exter-
nal magnetic field (e. g., the earth’s magnetic field).

The gas temperature at t= 0 is assumed to be not so high that the gas is appreciably electrically conducting and
interacts with the magnetic field. At t>0, as a result of deceleration, kinetic energy is converted into thermal energy
and the gas is heated. The thickness of the layer of effectively decelerated gas increases with time (a "viscous™ wave
moves along the y axis). At a sufficiently high velocity of the incident flow the temperature in the layer of decelerated
gas increases to the point at which the gas becomes electrically conducting and interacts with the magnetic field.
Hence thie velocity and temperature profiles become different from the ordinary hydrodynamic ones. In the presence of
conductivity anisotropy the field leads to the appearance of a velocity w.

Below we shall consider cases where the enthalpy of the gas satisfies the following initial and boundary conditions:

=he at 0<<y< oo, 1=0; y=o0, 1 >0,

h
h=h, o (Oh/0))=0 at y=0,t>0. (2.2)

In (2. 2) and elsewhere in this article the subscript w will relate to the parameters of the gas at the surface of the
plate. The first of the conditions at the wall corresponds to the case of heat transfer from the surface, the second to the
case of a thermally insulated surface., Since jy(°°, t) = 0, in accordance with (1. 4) ijO.

In order to estimate the order of thickness of the layer of decelerated gas 8(t), we will consider the case H = 0,
p =const, g = const, From (1. 6)-(1. 10) it follows that v = w = 0, while the velocity u satisfies the known equation

ou o%u p
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whose solution for boundary conditions (2. 1) is

n
u = u_gerfn ('q =3 ;Vi , erfn = 7: & “”'d’q) (2.9



Equations (2. 4) show that 8~ V/vi. When the gas is compressible but the electromagnetic force is smaller
than or equal in order of magnitude to the viscous force, then

8§~ V¥ (v* =p*/p*) (2.5)
In (2. 5) and elsewhere in this article an asterisk superscript denotes characteristic dimensional quantities.

We shall now estimate the order of magnitude of the various terms in the system (1. 1)-{l. 10), assuming that the
characteristic time and the characteristic dimension are related by (2. 5).

in the first place, from continuity equation (1.6) we find that for a compressible v ~ v*/8.

If the external applied electric fields are not very strong and 8< 1, then the orders of magnitude of the expres-
sions in square brackets in (1. 2) and (1. 3) are respectively determined by the orders of magnitude of the terms c™!BuH*
and ¢ 'uH*. From (1. 5) we find

H*R,, H*R,, U, 2
el ~ g Vg (= v = ) @9

The components of the electric field vector E, and Ex can be written in the form E;= E;" (1) -+ E;" (y, 1) (i =z, =).
The component E; is determined by the conditions of current flow in the external circuit (if it is assurned that there are
current-collecting electrodes connected across the external load), but is also induced as a fesult of the motion of the
plate relative to the external magnetic field; the eddy component E;” is a consequence of the time dependence of the
induced components of the magnetic field H, and H,. Using (2. 5), (2. 6) and the estimate for v, from (1. 5) we get
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On the basis of these same estimates we have
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The velocity w is a consequence of the action of the force c'leH*directed along the z axis. From (1.9) it follows

that
w B*uz G*H*Zaﬂ
e~ (=) 9
If the inequality
I == (v¥/v,, %) <€ 1 (2. 10)

holds, then, on the basis of the above estimates, expressions (1. 2) and (1. 3) may be written in the form
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Let us consider the equations of motion. From (1. 8) and the estimate for it follows that
AT p*u 2 1 , \ u 0
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Here and henceforth A ¢ denotes the change in @ across the layer &(t). If
I = (p*uyt /P A2 K1 (2.12)

then the change in t with respect to the coordinate y is much smaller than the corresponding change in velocity
N ~ 1) and enthalpy (| Ah/h|~ u 22k, =1) and with the indicated accuracy T = const everywhere in the
flow (the constant is determined from the conditions in the uniform stationary flow at y = =), Using estimates (2. 6),



we find
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then the change in pressure along y may be neglected and p = p, everywhere in the flow.

Satisfaction of inequality (2. 12) necessarily requires that R > 1, and for satisfaction of inequality (2. 13) with
(H* 2/811';;‘,(,) > 1 it is necessary that Ry« 1. From the condition R > 1 and the estimate for the velocity v it follows

that in (1. 10)
v 5
(x+2p)<a \<p,( “) , @. 14)

We shall determine to what extent inequalities (2. 10), (2. 12), and (2. 13) are satisfied in practical applications.
At the initial instant let the plate be located in a high-velocity flow of cold air. In order to estimate the maximum
temperature in the layer &(t) we assume that the stagnation enthalpy profile is similar to the velocity profile, while the
temperature of the plate is little differert from the temperature T, of the flow at lnfmlty Then the maximum value
of the enthalpy in the layer 6(t) is approximately equal to h, (1 + 0 125 {y — 1)M%, where M is the Mach number of
the oncoming flow. As the characteristic temperature T* we take the temperature corresponding to this enthalpy and
P = Po» Wwhile as the characteristic hydrodynamic parameters of the air entering into estimates (2. 10), (2. 12) and (2. 13)
we take the parameters for p = p, and T = T*, Let! T, = 220°K, H* = 5000 gauss. Consider the cases p,, = laum,M =
=18.5, p,= 1atm, M= 30, p, = 0.001 atm,M= 24.7. The parameter II; is equal, respectively, to 2.9-107%, 6.7-107%,
3.2-1077 the parameter R to 2-10° V¢, 2105 V'i, 7.9:10% ¥ ¢; the parameter I, to 8.4 -10710~1, 1.2 1092, 8 410771
the parameter R,, to 591070 V¢, 1.3.102 V £, 2.5-10-2 V'¢; the parameter Iy R;1105.8-10%Y¢, 1.3-1072 V¢, 2.5 Ve
In making the estimates we put § =V v¥2, The time t in these estimates is measured in seconds. Clearly, the inequal-
ity (2. 10) is always satisfied. Inequality (2. 12) is satisfied except at very small values of t (when t = 0 the basic equa-
tions have a singularity, in the same way as the equations of a two-dimensional stationary boundary layer have a sing-
ularity at the leading edge of the plate). At not too small pressures inequality (2. 13) is satisfied over a wide range of
variation of t. As the pressure decreases, the range of variation of t over which (2. 13) holds is considerably narrowed.

Henceforth we shall assume that inequalities (2. 10), (2. 12), and (2. 13) are satisfied. The simplified system of
equations (relations (2. 11) and (2, 14) hold, p = pe everywhere in the flow) in the nondimensional variables
U= U’ W= U’y b= hooh®, 8 = a7t (A% — 1) + u®? 4w
u,e u e .
B=Rp% P =p 0% 0=0%" B =-2Ep E’'="2%qs

has the form
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Here quantities with a superscript ° and also 6, ey» €, are nondimengional. In (2. 16) the quanmy o is the compressi-
bility parameter (in the case of a perfect gas with constant specific heats o = 0, 5(y — )M B, P is the Prandtl number.
€ a constant with dimensionality sec™!, and s the nondimensional "effective” conductivity. The quantities p°, u°,

P, s, B depend only on the enthalpy h,

The boundary conditions for u°, », w°, 0 follow from (2. 1)-(2. 2)
=1, w=0B0=1 at 0<yLoo, =0, y=oo, >0,

u’ =0, w® = 0, v=0 at y=0, t=0 (2.17)

“In determining the gasdynamic parameters we used the tables of [4] and [5].



0 =0, =al(,°—1) o (/) =0 a y=0, >0, : (2.17)
- (cont’d)

If e, and e, are known, then system (2. 15) with boundary conditions (2. 17) is closed. Let the magnetic field be
fixed relative to the plate. We shall express e, and e, in terms of the parameters of two electrical circuits, respective-
ly connecting electrodes in contact with the gas located in the planes z = +0. 5a,, and the planes x = +0, 5a,. From the
Kirchhoff equations for these circuits, on the assumption that their self—mducnon emf's can be neglected using (2. 11)
we get

Ar=e, (1 +qz§ sdy) + qu s (u° + Buw’) dy — q,e xTSBdJ,
_ 0 0
Ay = e, (1+qu s )+qx§°s(Bu ——~w°)dy+qxe,S sBdy, (2. 18)
0
e¢E} ' c*R, '
Aiz';;a”if[—*) %= (t=2, 2)-

Here Eoi is the external emf acting in the direction i, and R; is the external resistance.

1fE%= 0, gi = 0 (i = 3, z),then from (2. 18) e; = 0. In the case of isotropic conductivity, this regime (the
short-circuit regime) is amenable to a graphic 1nterpretat10n if the plate is considered to be the surface of a cylinder of
infinite radius; the streamlines will be concentric circles and the electric field will be zero.

If E% = 0, we get the generator regime. If Eoi # 0, then, depending on the sign and the magnitude of E°i and the
time t we may get both generator and accelerator regimes, Finally, by suitably varying the parameters of the external
circuits in time, we can make the quantities e, and e, constant throughout the entire process,

After solving system (2. 15) using (1. 5) and (2. 11), we determine the induced magnetic field, In the Dorodnitsyn
variables ‘

Y
§=Sp°dy, T =1

0

system (2. 15) assumes the form

du° g, o o 0 .
—g;—=voo—5—§—ap—6,%——scp(e,-—3ex+u +B0%)  =e)

2 : . o 0

at:. = Voo 3C‘pag +8q)(ex+Bez+uB—w) ((P=a"_'%_'%§')_po_)y (2.19)

a0 p- a 09 o
= Ve P I — ey [P — PYog (7 +u 5]+
+28q> (e + e? — ew® + e,u° -+ Beu’® + Bew®),
u® =1, w® =0, 0 =1 at 0< &< oo, T =0, §=O°,'€>'O,

(2. 20)
°=0, w°=0, 0=0, o (80/9) =0 at £=0,1>0.
For conversion to the old variables we use the formulas
g a
t =1, yzg—p« (2. 21)
0

In § 3 and 4 below we consider cases where the magnetic field is fixed relative to the plate, and in § 5 the case
where the plate moves in an external magnetic field.

§ 3, Consider the case e, = 0, e, = 0. We shall also assume that ¢ =1, P= 1, These latter conditions are widely
accepted assumptions in the theory of a compres31ble boundary layer. From (2. 19) we get the system

° 2 Lo} a o]
aal,‘v == Veo aacg eQ (uq + Bw ) au:« 'Voo acz + &Q (u B —w ) (3. 1)
ilij 020
B = Voqm (3.2



Equation (3. 2) has the same form as (2. 3) and its solution is
8=0,+1—8)erfn oo 0=1 (q=t/2Vv0).
The solution obtained allows us to express the enthalpy of the gas in terms of its velocity

h°=1— (1 —k)Erfn+a(erfn— 22 —w?)

or h=14a(l —u”®—w? (Erfn=1—ecrfy). (3.3)

In accordance with (3. 3), the enthalpy of the gas at a thermally insulated surface is equal to the stagnation en-
thalpy of the flow at infinity, while in the case of heat transfer from the surface the heat flux to the wall

2 (k3T | &
»(S‘: (kST 99D, ) (3. 9

Voo ~1/
§= E (ﬂtvoo) Peolbeo (2heg + tig? — 2hyy)

where § is the Stanton number. Clearly, the heat flux to the surface does not depend on the magnetic field,

Assuming that T is a small quantity, we will find the solution of (8, 1), (8. 2) in the form of series in powers of
&T with coefficients depending on the variable n:

u® = u, (M) + eru,; (n) + ey, () + . ..

, 3.5
w’ = gtw, (1) + e*Pw, () + . . . @.9)

‘Here and henceforth quantities with the subscript v ( = 0,1, 2,...) are dimensionless and correspond to the v-th
approximation, Substituting expansions (3. 5) into (3. 3), we get an expansion for h® whose first coefficient has the form

By =1 — (1 — hy°) Erin+4 a (erfn —u?) o k=14 a (1 — u?), (3. 6)
while the subsequent coefficients hi (i=1,2,...), identical for both relations (3, 3), are equal to
hy = — 20841, hy = — a (u,® 4+ 2ugu, + w,?), ... 6.7

The series expansion of the function ¢(h®) is found using the series expansion of the quantity h°:

o= e, =00k o=k

k=0
_ d hy? { dog
9 = h(g5) .+ (g5

o=t (3.8)

) s
h°=h,

The coefficients of the expansion of the function B(’) are given by the same formulas (3. 8), if B is substituted for

Substituting (3. §) and (3. 8) into (3. 1) and equating the coefficients of like powers of &7, we get the following
linear ordinary differential equations:

u,” -+ 21z, =0, g, (0) = 0, Uy (00) =1, (3.9
u,” + 2nu,’ — 4u, = 4o,u,, u; (0) =0, u, (0) =90, (3. 10)
w" + 20w, — dw, = — 4oy uBy w; 0) =0, w, (0) =0, (3. 11)
u,” + 2nu,’ — 8u, ='4(9,8y + Qou; + QBewy), u,(0) = 0, uy(o0) =0, (3.12)
wy' + 2wy’ — 8wy = — 4 (PouBy + PoloBy — Pows + LoBeP) »
wy (0) =0, w,(c0) =0. (3.13)

Here the prime denotes differentiation with respect to the variable n. The above and subsequent equations are
solved successively and integrated in quadratures [6]. We shall confine ourselves to a consideration of the zero and first
approximations, Consider the equation

D" + 2D’ — 4O = 2f (), !J(‘ﬂgg)KAn"’ (p>2). @.19)



A number of problems in the theory of an unsteady hydrodynamic boundary layer reduce to the solution of an
equation of this type [7).

If ® (%) = 0, its solution takes the form

®(m) =@ (0)exp (— )G (n) + L n, M) (3.15)
Lin ] =—05VRt+2m){Cartn+{/ @I+ 20 erfn x

X exp 1P + 2n-hnldn —erfq {7 (n) (1 + 2n?) exp wPdn} —
i (1]
— Cn exp (— 1?) + nexp (— 1?) S‘f(n)(i + 2n?) exp w2dn,

0
2}

c={tmema, o©@©=-20_a,
b Va
G =({~+29) Erfnexpn? — 2n-"%n (" — 214G’ — 6G = 0). (3.16)

In (3. 15) the function L [n, f (w)] is a solution of (3. 14) for @ (0) = 0, @ (o0) = 0, and the function
@ (0) exp (—M?)G (n) is a solution of the corresponding homogeneous equation for @ (co) = 0. It is easy to show
that

GM)>0, G <O, G M>0 for 0o,

\ 1 GO =1, G (0)=—dbn', G (0) =86, (3.17)
G (00) = 0, G’ (00) = 0, G (o0) = 0.

,& Graphs of the functions G () = K, (Q) and [G" (n)/ 6] = K, (), where
\ ,

Q =1 (1 + n)™. are presented in the figure. Further, we have

\. -Q.I "L [n, k.f, + kofy]l = kL [, fil + kzL [n, 2] (k1, k2= const),(3. 18)

L fm<0, i [fm)>0. (3.19)
Inequality (8. 19) was proved in [8] where one of the problems was reduced to an investigation of Eq. (3. 14).

The solutions of Eqs. (3. 10) and (3. 11) can now be represented in the form

Uy = erf-'rj, uy = 2L [0, @olt,l, wy = — 2L [n, QooB,] (3. 20)

since Qolty => 0, PoyBy => 0, on the basis of (3. 19) u; < 0, w; > 0. Thus, the velocity component condi-
tioned by the Hall effect is nowhere directed in the negative direction of the z axis.

We shall show that for fixed values of y and t (0<y< =, 0<t< =) the velocity u for H* = 0 is smaller than for H* =
= (. From (2. 21) and (3. 7) we find
ton

n 1},@ == § %?— — 2aet § [é—%zlg‘—ﬂ]ho:hn dotadn + ...

Since the derivative in the square brackets in the second integral is positive, uq =0, uy=0, denoting by 7, , and
n** values of n corresponding to the fixed quantity ¥ / 2} Vet for €7 = 0 and &7 = 0, we find that 7, = n**, Using
the fact that uy'= 0, we obtain the required inequality

0

By (M) + 82Uy (M) < 8o (M) < 4o (*)



Let us determine the integral characteristics. The friction drag ¢ f and the total drag c d are found using (3. 16)

2‘Vc° 1 — & 9 » a 5 N
o = = (Wtveo) /2(1 —2V'n stg ou,Gdn + . . ) (cf:‘%/_z_ﬁ)’
® 0 RO

0 (3.21)

2 . - ¢
¢ = _;g.;(m%)-/,@ +2Vx etg P, 0 — @ dn+ .. )
0

(o]
2H*
(cdz"’f"’ P oothoc? % ]zdy) : ©.22)

Since the quantities ¢y, up, 1 — G are nonnegative, from (3, 21) and (3. 22) it follows that the magnetic field
leads to a decrease in the friction drag and to an increase in the total drag. We assume that the enthalpy dependences
of 8,1+ B andp forh > h,, are respectively approximated by power relations with exponents n s Up and n

p’

3 ng n ' iy 1 i ‘ i3 e
o =U*(T> s -
< ng 1 ]0.06243 o.iggo o.égszo 0.46:::3

b 3 10.00263 | 0.1093 |5.69-1073 0.13
148 =@ +p*) (h—) , 4 [5.84.4074 0.0909 [1.20-10-3 0.0959
8 5 11.33.10-%| 0.0781 |2.63-10-4| 0.0727
PN 7 |7.13.10-% 0.0615 |1.36 10~% 0.0474
o =p*(T) ) 10  [0.95.40~7 0.0472 |1.74.10~7 0.0298

]

Here &%, B*, p* are certain characteristic values of §, 8, and p, computed respectively from the enthalpies h &
hB’ and hp. Then

Poo / P \"S £ R\ T8 s R N\ _
w=F(a) (7)) () aHpr emnnon @2

Since the variation of ¢ is basically determined by the change in conductivity (n close to ng), while for by ~ 1
the conductivity is practically equal to zero, in (3. 23) we may assume that
' ko—oceranrfnidr hy =a (1 — erf2 ).
The results of evaluation of the integrals in (3. 21) and (3. 22),

0 . s
=V \ erfn Extn)erf nG (n) dn, &, = Va{erfn ({—orfn)"G(n)dn,
1]

g

za—VnS (erf y Erf n)"erfn (1 — G) dn ,

iy=Vn S_erf n(l —erf2 )" (1 — G)dy ,

0

are presented in the table.

§ 4. Consider the case ¥ = 1, P = const # 1, e, = e, = 0. The corresponding system of equations consists of (3.1)
and the equation

-§%=pr"%§§— P (1—P)%(u°2+w°2). (4.1)

The solution of this system will be found in the form of series (3. 5) and the series
6 = 60 + 81761 + 82'['292 + v ew (4. 2)

Using these series, we determine the series expansion of the enthalpy h’

= hy + eth;, -+ e¥1%hy, + . . . hy =1 4+ & 8, — ug?), (4.3)



(4. 3)

by = a (8, — 2uquy), hy = a (8 — 2uguy — u? — wyd). (cont'd)

The functions ¢(h°) and B(h°) are expanded in series of type (3. 8) in which hg, hy and h; are expressed by formu-
las (4. 3). Substituting (3. 5) and (4. 2) into (3. 1) and (4. 1), we get equations (3. 9)-(3. 13) and the equation

0" + 208, = (1 — P) (ug?),” A = V' Py 08,(0) = o« (" — 1) 01 8pn” (0) = 0, 8, (00) = 1, (4.9)
00 4 20850" — 48; =2 (1 — P) (ugu,),” 6,(0) =0 or 6,°(0) =0, 8;(0) =0, (4.5
B3 -+ 24850  — 80, = (1 — P) (uy® + 2uouy +1w,2)," 0, (0) =0 or 0’ (0) =0, 6, (c0) = 0. (46

In (4. 4)-(4. 6) and below the subscript \ indicates that differentiation is performed with respect to the variable A
If there is no subscript, then differentiation is performed with respect to the variable n. Each equation in 6, for known
Uy (k=0,...,1) and Wy (k=1,...,i~1) and each equation in u and w; for known ek' Ups Wy (k=0,...,1—1) is inte-
grated in quadratures. Therefore the system of equations may be successively integrated in quadratures. For the zeroth
and first approximations we have:

up=cerfn, O,=a(h," —1)+05VnderfdA+ (1 —2P)r(1)
oo 0, =1—(1—P)gVa+ (A —Pr(),

A = 2n [0t (1 +oa—h°y)—g V(L — P, (4.1
oo A 2
g = S u?G (M) dA, r(A) = S exp (—A?) (S (ue2)” exp 7»2d)») dh ,
1] (1] [}
uy = 2L [, @oul, w; = — 2L [n, @oueBol, 8, = (1 — P) L [A, (ueu "]

oo 0, =—05dVn (1 —P)exp(—+)G (A + (1 —P)L [}, (mu '], .
oo ’ (4.

d = S uouIC;\” (A) dA.

0

The coefficients Cs and cy are determined from (3. 21), (3. 22), in which @g = ¢ (hy), where hg =1+ a(6—u02).
The Stanton number in the case of flow over a surface with heat transfer and the enthalpy of the gas at a thermally in-
sulated surface are found using (4. 7) and (4. 8):

_ Vo -y, ag Vw4 —P) gtad V(1 — P)
S-;;(rctvooP) /[1—— tTa—h° — Ifa—hy _;_,__], (4.9)
h=1+a[l —gVa(@—P)]—0.5etadVn (1 —P). (4.10)

In deriving (4. 8)-(4. 10) we used the equality

[e e}

d = @G W) dh = § ugm G (1) dh.
0 (1}

Since 1y <0, uy =0, G* = 0, we have d = 0. Thus, if P < 1, the magnetic field leads to an increase in heat
flux, while P > 1 it leads to a decrease. Similarly, when a magnetic field is applied the enthalpy of the gas at a ther-
mally insulated surface decreases if P > 1 and increases if P < 1.

It is of interest to compare the results obtained in § 3, 4 with the results of [9, 5] in which studies were made of
the stationary MHD boundary layer on a flat plate to which a transverse magnetic field was applied. In [9], by numeri-
cal integration of the boundary layer equations for the case P = 1, constant p, K, and k, and an exponential dependence



of conductivity on temperature Rossow found that a magnetic field leads to a decrease in friction drag and heat flux and
to an increase in total drag. Upon development of a boundary layer, in accordance with § 3, when P = 1 the magnetic
field acts on the friction and total drag in the same sense, but does not affect the heat flux to the surface. In [5] Bush
numerically integrated the equations of a compressible boundary layer on a flat plate to which he applied a transverse
magnetic field decreasing from the leading edge 1/ ¥V = . It was assumed that the plate was located in a flow of air
and that P = 0, 70, while allowance was made for the variation of p, #, and 8. Calculations showed that a magnetic
field leads to a decrease in friction and heat flux, Upon development of a boundary layer, in accordance with the re-
sults of § 4, when P = 0. 70 < 1 the magnetic field reduces friction but increases the heat flux.

§ 5. Let the magnetic field be fixed relative to the oncoming flow (plate moving in an external magnetic field).
In this case e, = -1, We put ey = 0, ¥=1, P=1 system (2. 19) assumes the form
ou® 2u® : - 00 0%0 o o
—g;:Voo-'a*g—z—-"l—sq)(i—uo_Bwo)’ F‘szOo_ggT—l—zsq)(i—u—Bw), (5 1)
ow® w° '
B =Voo—3z-2—'—3(P[B(1—uo)+wO]-
Note that in this case, in order that the flow at infinity be uniform, it is not necessary to require that ¢ = 0 as
y = . Therefore system (5. 1) with boundary conditions (2. 20) can be used not only to describe the motion of a plate
in an initially nonconducting gas, when the conductivity in the boundary layer increases as a result of heating due to
friction, but also to describe the motion of a plate in a fluid of constant conductivity.

We shall seek the solution of system (5. 1) in the form of series (3. 5) and (4. 2). Substituting these series into (5. 1),
for the zero approximation (up and 6y) we get Eqs. (3. 9) and (4. 4) whose solutions are given by (4. 7) (in (4. 4) and
(4. 7) we must put P= 1, 1 = A), and for the first approximation the equations

uy” + 2nu’ — duy = — 4oy Erfn,  u, (0) =0, #y (00) =0 (5. 2)
wy" + 2nw,’ — 4w, = 4B, Erfn, w, (0) =0, wy (00) =0, (5.3)
0," + 2n8,” — 46, = — 8¢, Erf n, 8,(0)=0 or 6,(0) =0,

' 8, (c0) = 0. (5.4)

We recall that here @, = @ (h,), Bg = B (%), where 2y = 1 + o (0, — u,?). The solution of these equations
has the form

ul = - ZL [Tl, (Po EI‘f T]], wl = ZL [na cPOBO EI‘f 'fl] ?
8, = — 4L [n, ¢, Erf 1]

or
8, = 0.5m V'm exp (— n?) G (n) — 4L [n, ¢, Erf ] (5.9)

<0

(m =4\ 6 () ¢ Extnan).

From (5. 5), using (3. 19), we find that u, > 0, w, <{ 0. The friction drag, Stanton number, and the enthalpy
of the gas at an insulated wall are equal to

2 -
& = == (atveo) s (1 + 0.5 Vaimet + . . .) (5. 6)
v v, am Vet
S——Jz(mvoo) /(1v+—-———_—1+u_~hwo+...) (5.7
ho® =1+ a + 0.5ma Vet + . . . (5. 8)

Since G > 0, ¢, > 0, Erf 1y > 0, from (5, 6) and (5. 7) it follows that a magnetic field leads to an increase
in friction drag and heat flux. Note that in the case of a two-dimensional stationary boundary layer on a semi-infinite
plate moving in an external magnetic field, the friction drag and heat flux due to the action of the magnetic field at
P = 1 vary in the same sense [9, 10].
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when ¢, = const (e. g., 8, p, and B are constant), we have

/ s
¢ = 3-(%‘;—") (1 + ety + ...), uy = Qo {Erf 1 — exp (— 1) G ()},

oo

Ve y, 2aetqo ~t,
S = ;o—o(?‘ttvoo) / ('1+ m + .. ) (m = 2n"rqy) .
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