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The problem of nonstationary magnetohy~odynamie  flow of a viscous fluid in a half-space resulting from 
the motion of an infinite plate has received much attention. In [1], for example, solutions are presented 
for the case of lsotropic conductivity, while in [2] a solution of the Rayleigh problem is offered for the 
case of anisotropic conductivity. In these instances the fluid was assumed incompressible and uniform, 
and the system of equations was found to be linear. In problems involving nonstationary flow of  a gas in 
a transverse magnetic  field resulting from the deceleration of a high-veloci ty gas flow at the boundary of 
a half-space or the motion of an infinite plate at supersonic speed relative to a stationary gas it becomes 
necessary to take into account the compressibility of the gas and the temperature dependence of the con2 
duetivity. It is then possible to have flows in which the gas becomes electrically conducting and begins to 
interact with the magnetic  field solely as a result of the increase in temperature due to viscous dissipa- 
tion of energy. The magnetic field, interacting with the conducting gas, exerts an effect on the drag and 
heat transfer to the surface of the plate. At sufficiently low gas pressures and strong magnetic fields a Hail 
effect may be observed. The system of equations describing the motion of a compressible gas with vari- 
able conductivity is essentially nonlinear. The present article is devoted to a study of such motions. 

w I. Consider a nonstationary magnetohydrodynamic flow in which all the quantities depend on a single variable 
y. From the equations of etectrodynamics 

and Ohm's law, 

we find that 

d i v  H ---- O, ro t  E ---- - -  c -~.~ 
0 t  ' 

written in the form 

j ----- c r ( E  q - - - s  I I ) -  a j x  t t  

ro t  H ~ 4 a c - Z j  , 

OL-:~- ) 

Uy ----- ~/* -~ c o n s t ,  

'~ ~ (vH~ - wH*) + ~E~ + c i,: = V-4-y  Ex + - g -  - -  , 

o ~ (vHz - -  wH*)], 

L = iv (t) = ~ [ G  + - / -  
Ogz...~_ t 0t t  x OEx t OHz OH z 4 ~ .  
O---y c at ' Oy c at ' Oy ~--- ~ ]x, 

Here 

H----(H~,//y, Hz), E =  (Ex ,  

are the vectors of the electr ic and magnetic  fields, 

(9 = e H * ) ,  

OHx 4~ . 

05, r 

(1. 1) 

(1. 2) 

(1~ a) 

(1. 4) 

(1. ~) 

Eu,  E~), j = (l'~, /u, 1~), v = (v~,vu ,  vz) 

the electric current density, and the velocity of the medium, e and 
m are the electron charge and mass, T is the mean time between collisions involving an electron and other particles, 

and c is the speed of light in vacuum. 

The equations of continuity, motion, and energy have the form" 

0p 0pv 
O--T "q- ~ : 0 (I .  6) 

*Since ion slip is not taken into account, the viscous stress tensor does not depend on the magnetic  field. The de- 
gree of ionization is assumed to be small; therefore the additional, anisotropy-conditioned terms in the heat  flux vector 

may be neglected [3]. 



Ou Ou O Ou ]vHz --/zH* ~ H* OH~ (11 7) p - g / - +  pv-y~- = -~-y ~ -gy- + x ,  x = .  c - -  oy " 

p g  + o v - ~ - y  = -  W +  ~ ~+Y,r-  I o ( H 2 + H 2 )  ' (1. s) 
8~ Oy 

Ow Ow 0 Ow Z = ixH* -- ivHx 5 H* aHz (1.9) 
c - 5 7 '  

Oh Oh 0 OT Op Op ( Ov ~ 2 

(L lO) 
f0~ /2  1,0~2 i . 2  . 

§ t~ ~ 0y ] § g \-~,j / + T (]~ _L]r + / / ) .  

Here p is the density of the medium, p is pressure, T temperature,  h enthalpy,  Cp specific heat  at constant pres- 
sure, k and p thermal  conductivi ty and dynamic viscosity, and X the second bulk viscosity coefficient.  

w 2. Let the veloci ty  of the gas in the hal f -space  y > 0 above the surface of the pla te  y = 0 satisfy the ini t ia l  and 
boundary conditions 

u = u c o = c o n s t  at 0 < y < 0 r  t - - 0 ,  y - - o o ,  t>~0 ,  

v - - 0  at y = 0 ,  t > ~ 0 .  
(2. 1) 

Conditions (2, 1) are rea l ized  for the motions of a viscous gas in the following cases: a p la te  moving at t < 0 with 
the ve loc i ty  of  the surrounding uniform gas flow is instantaneously stopped at the instant t = 0; a uniform gas flow in the 
ha l f -space  y > 0 instantaneously begins to be decelera ted  at  the boundary y = 0 at  the instant t = 0; at the instant t = 0 a 
p la te  instantaneously acquires a veloci ty  u~o re la t ive  to a stationary gas. The coordinate system is t ied to the plate.  The 
veloci ty  u~o is assumed to be much greater  than the speed of sound in the gas at infinity, 

Let a uniform external  magnet ic  field H* be appl ied  in the direct ion of the y axis. The interact ion of the gas with 
the field will  be different depending on whether the magnet ic  field is t ied to the pla te  (the pla te  "carries" the magnet ic  
field with it) or to the gas flow at infinity. If  one draws the analogy with flow past bodies, then the first case corres- 
ponds to motion of a vehic le  carrying a magnet ic  system on board, and the second to the motion of a body in an exter-  
nal  magnet ic  field (e. g . ,  the earth 's  magnet ic  field). 

The gas temperature  at  t= 0 is assumed to be not so high that the gas is appreciably  e l ec t r i ca l ly  conducting and 
interacts with the magne t ic  field. At t > 0, as a result of decelerat ion,  kinetic  energy is converted into thermal  energy 

and the gas is heated.  The thickness of the layer  of e f fec t ive ly  dece lera ted  gas increases with t ime  (a "viscous" wave 
moves along the y axis). At a sufficiently high veloci ty  of the incident  flow the temperature  in the layer  of dece lera ted  

gas increases to the point at  which the gas becomes e l ec t r i ca l ly  conducting and interacts with the magnet ic  field. 

Hence the ve loc i ty  and temperature  profiles become different from the ordinary hydrodynamic ones. In the presence of 

conduct ivi ty  anisotropy the field leads to the appearance  of a ve loc i ty  w. 

Below we shall consider cases where the enthalpy of the gas satisfies the following in i t ia l  and boundary conditions: 

h=hoo at O<y<c~,  t--~O; y = o %  t ~ O ,  
(2. 2) 

h = hw or (Oh / Oy) = 0 at  y ~ 0, t ~ 0. 

In (2. 2) and elsewhere in this a r t i c le  the subscript w will  re la te  to the parameters  of the gas at the surface of the 
plate.  The first of the conditions at  the wall  corresponds to the case of hea t  transfer f rom the surface, the second to the 

case of a the rma l ly  insulated surface. Since jy (% t) = 0, in accordance with (1. 4) j y -  0. 

In order to es t imate  the order of thickness of the layer  of dece le ra ted  gas 5(t), we will  consider the case H = 0, 

p = const, p = const. From (1. 6)-(1.10) it  follows that v = w = 0, while the veloci ty  u satisfies the known equation 

Ou 02U I ~ \  
[V : "~-)  (2. 3) 0"--/- = ~ oy' \ V' l  

whose solution for boundary conditions (2. 1) is 

2 ]/-~-t ' erf~] = - ~  e-~'dTI . (2. 4) 
0 



Equations (2. 4) show that 8 ,-~ V-~-i. When the gas is compressible but the electromagnetic force is smaller 
than or equal in order of magnitude to the viscous force, then 

8 --- V - ~ /  (.o* = p~*/p*) ( 2 . 5 )  

In (2. 5) and elsewhere in this article an asterisk superscript denotes characteristic dimensional quantities. 

We shall now estimate the order of magnitude of the various terms in the system (1.1)-(t. 10), assuming that the 
characteristic t ime and the characteristic dimension are related by (2. 5). 

In the first place, from continuity equation (1.6) we find that for a compressibl e v ..- v*/8. 

[f the external applied electric fields are not very strong and $ < 1, then the orders of magnitude of the expres- 
sions in square brackets in (1. 2) and (1.3) are respectively determined by the orders of magnitude of the terms c-lSuH * 
and c-lul l  *. From (1. 5) we find 

H* R m H*  R m 
IHxl ~ ~ '  [ H z l " ~  ~* R m - -  uco8 c 2 ) 

vm* ' vm*--  4gz--* " (2. 6) 

The components of the electric field vector E z and E x can be written in the form Ei= E( ( t )  -~ Ei" (y, t) (i = z, x). 
The component E~ is determined by the conditions of current flow in the external circuit (if it is assumed that there are 
current-collecting electrodes connected across the external load), but is also induced as a result of the motion of the 
plate relative to the external magnetic field; the eddy component E i" is a consequence of the t ime dependence of the 
induced components of the magnetic field H x and H z. Using (2. g), (2. 6) and the estimate for v, from (1. 5) we get 

%~*uc~ ( ~* ) (2.7) I E=" I ~ X, u~ H*,  1 E~" I c H* 3( ~ Vrn, (t @ ~*~) ' 

On the basis of these same estimates we have 

vH x vHz ~ vHz 
-ff-H-~-I ' '% '  I ~ / ~ % ' "  ~ I--~X~*~ . (2.8) 

The velocity w is a consequence of the action of the force c-lJxH*directed along tl~e z axis. From (1.9) it follows 

that 

w ~*n ~ ( a*H*~8 2 ) 
%0 ~ t + p * ~  u s _  c~l~ ~ . ( 2 . 9 )  

If the inequality 

II~ = (v*/%~*) , ~  i (2. lO) 

holds, then, on thebasis  of the above estimates, expressions (1.2) and (1. 3) may be written in the form 

o(  o.. 
& _  ~ _ f ~  E 2 - -  u + ~ ' +  H* , 

] z=  t ~ "  Ez" @ c H * - - [ 3 E  x ' +  H* �9 

Let us consider the equations of motion. From (l. 8) and the estimate for it follows that 

(2. 11) 

A T  ,-,. p * u ~  

Pc* Pc~ 

I uoo8 ) 

Here and henceforth A ~, denotes the change in ~ across the layer 5(t). If 

II2 --~ (p*uco2/pcr R - 2 ~  I (2. 12) 

then the change in t with respect to the coordinate y is much smaller than the corresponding change in velocity 

~( i ~ u/u l ~-- I) and enthalpy (]Ah/hl~ uoo~/2hoo>~ I) and with the indicated accuracy T = const everywhere in the 
flow (the constant is determined from the conditions in the uniform stationary flow at y = =o). Using estimates (2. 6), 



we find 

l ~ p [ 1 mB.~H*~ 
(m = max (1~ *~, 1)) . 

If 

rh = (a~n*=/aa,,oo) - ~  * (% in) 

then the change in pressure along y may be neglected and p = p~ everywhere in the flow. 

Satisfaction of inequality (2. 12) necessarily requires that R >> 1, and for satisfaction of inequality (2. 13) with 
(H*Z/8zrp~o) > 1 it is necessary that R m << 1. From the condition R >> 1 and the est imate for the veloci ty v it follows 
that in (1.10) 

Is [ Ou ~ ( L + 2 . ) ( " ~ ,  < " \ W ]  " (2.14) 

We shall determine to what extent inequalities (2. 10), (2. !2), and (2. 18) are satisfied in pract ical  applications. 
At the initial instant let the plate be located in a high-veloci ty  flow of cold air. In order to est imate the maximum 
temperature in the layer 6(0 we assume that the stagnation enthalpy profile is similar to the velocity profile, while the 
temperature of the  plate is li t t le differer~r from the temperature Too of the flow at infinky. T h e n  the max imum value 
of the enthalpy in the layer 6(0 is approximately equal to h ~  (1 + 0. 125 ( y  ~ 1)MZ), where M is the Maeh number of 
the oncoming flow. As the characteristic temperature T* we take the temperature corresponding to this enthalpy and 
P = P~o, while as the  characteristic hydrodynamic parameters of  the air entering into est imates (2. 10), (2. 12) and (2. 13) 
we take the parameters for p = p~  and T = T*. Let I Too = 220*K, H* = 5000 gauss. Consider the cases Poo = i a tm ,M = 
=t8.5, Poo----- i a tm,  M =  30,po o -~ 0.001 a t m , M =  24.7. The parameter  II 1 is equal, respectively, to 2.9 dO -n,  6.7.10 -s, 
3.2.10-7; the paramete r  B to 2 . t& V-7, 2.10 s l /T ,  7.9 .t0a V-~' the parameter  II~ to 8.4-t0-~0t -i, t.2.10-gt -1, 8.4-10-r/-1; 
the parameter  R m to 5.9 .t0-* ]/-K, t.3 .t0 -2 V-t7 2.5.10-~ V-~ the Parameter I I '~R~ ro5.8 . t0-q/-~,  1.3 d0 -~ V-~, 2.5 ] f E  
In making the est imates we put 0 = ] /  v*t, The t ime t in these estimates is measured in seconds. Clearly, the inequal- 
ity (2. 10) is always satisfied. Inequality (2. 12) is satisfied except  at very smaU values of t (when t = 0 the basic equa-  
tions have a singularity, in the same way as the equations of a two-dimensional  stationary boundary layer have a sing- 
ularity at the leading edge of the plate). At not too small pressures inequality (2. I3) is satisfied over a wide range of 
variation of t. As the pressure decreases, the range of variation of t over which (2. 13) holds is considerably narrowed. 

Henceforth we shall assume that inequalities (2. 10), (2. 12), and (2. 13) are satisfied. The simplified system of 

equations (relations (2. 11) and (2. 14) hold, p = poo everywhere in the flow) in the nondimensional variables 

' / t  o 0C- i = uoou ~  = u o o w , h = h o o h  ~  = (h ~  + u ~ + w  ~ 

0 o uo~% %0% H *  
l* = P~o~P "~ P = Poo, , o = o*~ ~ &: '  = ~ H* ,  E l - -  c 

has the form 

OP ~ oO u~ o Ou~ 0 oO u~ Uo 
o - T + - ~ - v  = 0 ,  O W + ~ v - ~ d = V o o ~ - y ~ - ~ - - s s ( e ~ - - ~ e ~ +  + ~ w  ~ 

pOOW ~ o Ow ~ a ' o OW ~ 
+ p v ~ -  = v~o -~- ~-y + ~s (e~ ~ w ~ + ~e~ + ~u~ (2. 15) 

o O0 O0 0 o .  x O0 0 

+ 2es (e~ 2 + e~ ~ - -  exw q- ezU + ~e~u + ~e~w) 

U oo~ C pl.1, r3aH ,~ ~o 
. . . . .  S = ~ (2. 16) a 2 - ~ '  P k ' e c~p~ o ' t + ~  ' 

Here quantities with a superscript * and also 0, ex, e z are nondimensional. In (2. 16) the quantity a is the compressi-  
bility parameter  (in the case of a perfect gas with constant specific heats c~ = 0.5(7 - 1) MZ), P is the Prandtl number, 
s a constant with dimensionali ty sec -l,  and s the n0ndimensional "effect ive"  conductivity. The quantities p~ ~t ~ 
P ,  s, ~] depend only on the enthalpy h. 

The boundary conditions for u ~ v, w ~ 0 follow from (2. 1)-(2. 2) 

u ~  1, w ~  0 = t at  O < y , ~ o o ,  t = O ,  y = o o ,  t> /O,  

U ~ = 0 ,  w ~ = 0 ,  v = 0 at  y = O ,  t ~ ( j  (2. 17) 

~In determining the gasdynamic parameters  we used the tables of [4] and [5]. 



0 = Ow = ~ - x  ( h u O _  t )  or ( O 0 / O y )  = 0  at y = O ,  t>/O. (2. 17) 
(cont'd) 

If e x and e z are known, then system (2. 15) with boundary conditions (2. 17) is closed. Let the magnetic field be 
fixed relative to the plate. We shall express e x and e z in terms of the parameters of two electrical circuits, respective- 
ly connecting electrodes in contact with the gas located in the planes z = +0.5a z and the planes x = +0.5a  x. From the 
Kirchhoff equations for these circuits, on the assumption that their self-ind'uction emf 's  can be neglected, using (2. 11) 
we get 

o o  c o  Oo 

A, = e, ( I  + q, I sdy) + q, I s  (u ~ + ~w ~) dy --q,ewi s[~ dy, 
0 0 0 
co o0 oo 

A, = ex ( I  + qxl s dy) -I- q:~ I s(~a~176 q,ez S s[~ dy, 
0 0 0 

(2. 18) 

eE ~ s*R i 
A i  -= ucoaiH.  ., qi --~ ai (f --- z, z ) .  

Here E~ is the external emf  acting in the direction i, and R i is the external resistance. 

IfE~ - 0, qi ----- 0 (i = z, x),then from (2. 18) e i = 0. In the case ofisotropic conductivity, this regime (the 

short-circuit regime) is amenable to a graphic interpretation if the plate is considered to be the surface of a cylinder of 

infinite radius; the streamlines will be concentric circles and the electric field will be zero. 

If E~ 0, we get the generator regime. If E ~ ~ 0, then, depending on the sign and the magnitude of E~ and the 
1 

t ime t we may  get both generator and accelerator regimes, Finally, by suitably varying the parameters of the external 
circuits in time, we can make the quantities e z and e x constant throughout the entire process. 

After solving system (2. 15) using (1. 5) and (2. 11), we determine the induced magnetic field. In the Dorodnitsyn 

variables 

Y 

= I p ~  ~ = t  

0 

system (2. 15) assumes the form 

Ou ~ 0 . O u  ~ uo 
0-7 = roe ~ ~P ~ -- e~ (ez -- ~e~ + + ~w ~ ($:= 0~176 

- -  0 . O w  ~ , . O~ 
O u ' ~ 1 7 6 1 7 6  5 - e ~ [ e = + ~ e ' + z F ~ - w ~  (~ = (t + ~9 o ~ ) , (2.19) 

o _ , .  oo o 
0-7 = e -  t*  v~176 L U~ .J 

+ 2e~ (e~ ~ + e~ ~ -- e~w ~ + e~u ~ + ~e~zz ~ + [~ezw~ 

u ~  w ~  0 = t  a t 0 < ; < o o ,  x = 0 ,  ~ =  o o , ~ > / 0 ,  
(2. 2o) 

tz ~ = 0 ,  w ~ = 0 ,  0 = 0 .  or ( 0 0 / 0 ~ )  = 0 at g = 0 ,  ~ > ~ 0 .  

For conversion to the old variables we use the formulas 

(2.21) 
0 

In w 3 and 4 below we consider cases where the magnetic field is fixed relative to the plate, and in w 5 the case 

where the plate moves in an external magnetic field. 

w 3. Consider the case e x = 0, e z = 0. We shall also assume that ~ = i, P = i. These latter conditions are widely 

accepted assumptions in the theory of a compressible boundary layer. From (2. 19) we get the system 

OU ~ O:IU ~ 

o-7 = 
(3. I) 

O0 020 
o - - V  = �9 

(a. 2) 



Equation (3. 2) has the same form as (2. 3) and its solution is 

0 = ' 0 ~ +  (t - -  O~) erf ,1 or 0 ~ t 0 1 = ~ / 2 t ~ v o o ~  ). 

The solution obtained allows us to express the enthalpy of the gas in terms of its velocity 

or  
h ~ = t - -  (1 - - h ~ ) E r f ~ l  + a  ( e r f ~ i - -  u ~ 1 7 6  

h ~ = t + a (1 - -  u ~ - -  w ~ (nrf ~1 = t - -  err ~1) �9 (3. 3) 

In accordance with (3.3), the enthalpy:of the gas at a thermally insulated surface is equal to the stagnation en- 
thalpy of the flow at infinity, while in the case of heat transfer from the surface the heat flux to the wall 

where S is the Stanton number. Clearly, the heat flux to the surface does not depend on the magnetic field. 

Assuming that s r  is a small quantity, we will find the solution of (3. 1), (3. 2) in the form of series in powers of 
s~" with coefficients depending on the variable ~: 

u ~ = Uo 01) + ~ : u l  0t) + ~ r  Ol) + �9 �9 �9 

w ~ = ~ w l  01) + s ~ ' w ~  01) + �9 �9 �9 
(3. 5) 

H e r e  and henceforth quantities with the subscript v (v = 0, 1, 2 . . . .  ) a re  dimensionless and correspond to the v-th 
approximation. Substituting expansions (3. 5) into (3.3), we get an expansion for h* whose first coefficient has the form 

h 0 =  t ( t - - h w  ~  I + a ( e r f ~ - u 0  ~) or ho = I + a ( t - - u 0 ~  ) ,  (3. 6) 

while the subsequent coefficients h i (i = 1, 2 , . . .  ), identical for both relations (3. 8), are equal to 

h i  = - -  2au0uz, h= = - -  a (ul ~ -4- 2u0u~ + wl~), . . .  (3.7) 

The series expansion of the function 9(h*) is found using the series expansion of the quantity h~ 

= ~ ( ~ )  % ,  % = ( p ( h o ) ,  ( h = h  ~ h . = h .  
k = o  (3.8) 

The coefficients of the expansion of the function •(h*) are given by the same formulas (3.8), if B is substituted for 

Substituting (3.5) and (3. 8) into (3.1) and equating the coefficients of like powers of s t ,  we get the following 
linear ordinary differential equations: 

Uo" + 2~lu 0' = 0, u 0 (0) = 0, u 0 (cr = 1 ,  (3. 9) 

ul" + 2~lU 1' - -  4u 1 = 4%u 0, u 1 (0) = 0, ul  (cr = 0 ,  (3.10) 

w/'  + 211w1' - -  4wl  = - -  4% Uo~o, w 1 (0) = O, wl  (o0) = O, (a. 11) 

tq" + 2~lu( - -  8u2 = ' 4 ( q h u  0 + (poul + %[t0w j ,  u~ (0) = 0, u s (oo) = 0, (3. 12) 

w2" + 2~lW~' - -  8ws = - -  4 (%U1~o + %uO~l - -  (PoWl + Uo~o%), 

w~ (0) = 0 ,  w~ ( ~ )  = 0 .  (3. la) 

Here the prime denotes differentiation with respect to the variable lq. The above and subsequent equations are 
solved sueoessively and integrated in quadratures [6]. We shall confine ourselves to a consideration of the zero and first 
approximations. Consider the equation 

I / (~)1  < A ~  -v ( p > 2 ) .  (a. 14) 



A number of problems in the theory of an unsteady hydrodynamic boundary layer reduce to the solution of an 
equation of this type [7]. 

If r (~o) = 0, its solution takes the form 

01) = �9 (0) exp ( "  ~l *) G 01) + L [~l, I 01)] (a. 15) 

L DI, ] Ol)] = - -  0.5 ] / ~  (1 + 2~1 ~) {C erf ~l + S 
0 

X oxp 11 ~ + 2:t-'/,~l] d~l - -  erf~l f / 0 1 )  (t + 
0 

- -  C~I exp ( - -  n') + n exp (--  ~l*) I ] 01)(1 
0 

~o  

c =  I ! (n)v (hi dn, r  (0) - 
0 

/ (n) [(t + 2~1 ~) err ~ >< 

2~') exp Tilde} -- 

+ 2~ ~) exp ~12d~l , 

40 (o) 2 C ,  
Y ~  

G (~1) - -  (1 + 2~1 ~) Erf  ~1 exp ~1" - -  2a-'/, ~1 (G" - -  2~IG' - -  6G 0) .  (3.16) 

In (3. 15) the function L [~1, ] 01)] is a solution of(3. 14) for (D (0) ----- 0, (I) (co) = 0, and the function 
�9 (0) exp (--  ~I~)G 01) is a solution of the corresponding homogeneous equation for ~ (oo) --  0. It is easy to show 

that 

\ 

.g I 

G ( T i ) > 0 ,  G' 01) < 0 ,  G" (TI )>  0 :for 0 < ~ 1 < o o ,  

G (0) = t, G' (0) = - 4~-'/,, 

v (o~) = 0, G' ( ~ )  = o, 

Graphs of the functions G 01) = K1 (Q) and 

G" (0) = 6, (8.17) 

a" (oo) = 0.  

[G" 0 l )  / 61 = Ks (Q), where 

= ~] (t + lq)-x, are presented in the figure. Further, we have 

L [~1, k~/1 + k21~l = kxL D1, /x] + k2L [% f3] (/cI, k~ = const),(3. 18) 

L in, / (n)l < O, if / (n) > O. Ca. ~9) 

Inequality (3. 19) was proved in [8] where one of the problems was reduced to an investigation of Eq. (3. 14). 

The solutions of Eqs. (3.1% and (3. 11) can now be represented in the form 

u o = err ~1, a 1 = 2L D1, (p0u0], wl = - -  2L DI, (p0Uo~0] (3.20) 

Since (PoUo >~ 0, (P0uo~o >~ 0, on the basis of (3. 19) U 1 ~ 0, W 1 >~ 0. Thus, the velocity component condi- 
tioned by the Hall effect is nowhere directed in the negative direction of the z axis. 

We shall show that for fixed values of y and t (0<y< ~, 0<t< oo) the velocity u for H* ~ 0 is smaller than for H* = 
= 0. From (2. 21) and (3. 7) we find 

"tl ~3 

Y - -  uoux d~l + �9 � 9  = ~ d~l __ 2ae, ~[a ( ! , /~ ) ]  
2 o po o ~L dh -Ih~ 

Since the derivative in the square brackets in the second integral is positive, u0 ->0, u t -  < 0, denoting by ~** and 
~** values of 71 corresponding to the fixed quantity y / 2 ~ V - ~ t  for e• ~ 0 and er = 0, we find that 11.. -< ~**. Using 
the fact that u0'~ 0, we obtain the required inequality 

u0 01. . )  + 8tul 01. . )  -.< u0 01. . )  -.< u0 01"*) 



Let us determine the integral characteristics. The friction drag cf  and the total drag c d are found using (3.16) 

oo 

%0 ; ' PooU~ ~ ] ' 
c o  

ca ----- -h~- 
0 

(3. 21) 

(3O 

c d-~-c] + cpcoUco------ ~ j /z dy , 

0 

(3. 22) 

Since the quantities ~0,  u0, 1 - G are nonnegative, from (3. 21) and (3. 22) it follows that the magnetic field 
leads to a decrease in the friction drag and to an increase in the total drag. We assume that the enthalpy dependences 
of 5, 1 + Bz and p for h > h,o are respectively approximated by power relations with exponents n 5, n/y and np : 

i + ~  

na 

= ( i  + 3 o.oo  3 
, 

5 i .33.t0- '  
f ~, , ' %  7 ,7. i3 .10-  

p p* ( -~- )  . i0 [0.95.i0- 

n [ i~ i, [ i, i, 

o.t99o o.t857 
0A093 5.69.t0-~ 
0.0909 1.20.10 -a 
0.0781 12.63.i0-4 
0.06i5 [i.36 i0 -~ 
0.0472 [1.74.i0-~ 

0.4633 
0A359 
0.0959 
0.0727 
0.0474 
0 . 0 2 9 8  

Here 6", /3*, p* are certain characteristic values of 5, /3, and p, computed respectively from the enthalpies h 5, 
h/5, and hp. Then 

iV) iV) ( 3 . 2 3 )  

Since the variation of ~o is basically determined by the change in conductivity (n close to n6), while for h0 ~ 1 
the conductivity is praetically 'equaI to zero, in (3.23) we may assume that 

h o = z c e r f ~ E r f ~ l  i or h o = e ( t  err  ~ ) .  

The results of evaluation of the integrals in (3.21) and (3 .22) ,  

i ,  =- V ~  I (erf  1 E r f  ~l)nerf 11G(I  ) d11, i~ = V ~  I erf~ I ( i - -er f~ l ] )nGOl)d~l ,  
0 0 

o o  

i3 = ~f~ I (err ~1 E r f  ~l)n e r f  ~l (1 - -  G) dT 1 , 
0 

o o  

i ,  -= V ~  I er r  I1 (1 - -  e r f '  ~l)" (l  - -  G) d n , 

0 

are presented in the table. 

w 4. Consider the case ~ = 1, 
and the equation 

P -~ const ;~ 1, e z = e x = O. The corresponding system of equations consists of (3. 1) 

00 - - t  O~0 0 ~  hzo~. wOS) (4. i) 

The solution of this system wilI be found in the form of series (3. 5) and the series 

0 = 0 o + e T 0 1 + e ~ 0 ~ + . . .  

Using these series, we determine the series expansion of the enthalpy h ~ 

(4. 2) 

h ~ = h o + e v h  t + e ~ h ~ + . . ,  h o = i + a ( 0  o -  Uo~), (4. 3) 



(4. 3) 
h 1 = a (01 - - 2 u 0 u 0 ,  h,  a ( 0 , -  2uou~ - -  u l  ~ - -  w l * ) .  (cont'd) 

The functions q(h ~ and t~'h*) are expanded in series of type (3. 8) in which h0, h! and h s are expressed by formu- 
las (4. 3). Substituting (3.5) and (4. 2) into (3. 1) and (4. 1), we get equations (3.9)-(3. 13) and the equation 

0o~" + 2~0ox' = ( i -  p )  (uo*)~" z = V P n  oo (0) = a -1 ( h J  - -  i )  or 0o~' (0) = 0, 0o (oo) = i ,  (4. 4) 

011" + 2)~01~' - -  401 = 2 (t - -  P )  (U0Ul))"  01 (0 )  = 0 or  01A' (0)  = 0 ,  " 01 ( o o )  ---- 0 ,  (4. 5) 

0,~ ~ + 2k0~ '  - -  802 = (1 - -  P) (u~ ~ + 2UoU, + wl*)~ " 0 ,  (0) = 0 or 0 ~ '  (0) = 0, 02 (oo) ----- 0.  (4. 6) 

In (4. 4)-(4. 6) and below the subscript X indicates that differentiation is performed with respect to the variable X. 
If  there is no subscript, then differentiation is performed with respect to the variable ~. Each equation in 0 i for known 
u k (k = 0 . . . . .  i) and w k (k :, 1, . . . .  i - l )  and each equation in u i and w i for known Ok, u k, w k (k = 0 . . . . .  i - ! )  is inte- 
grated in quadratures. Therefore the system of equations may be successively integrated in quadratures. For the zeroth 
and first approximations we have: 

u o = err ~, O o = a -1 (hw ~ - -  t )  -k 0 .5  ] / - ~ - e r f  L -k (1 - -  P )  r (~,) 

or 00 i - ( l - p )  g V ~ + ( i - P ) r ( ~ ) ,  

A = 2g- ' / ,  [~-1 (t + r162 - -  h ~  g ]/~ (1 - -  P ) ] ,  
ao x k 

g = S uO'G ()0d)~, r ( t ) =  S e x p ( - - ~ ' ) (  i (Uo')x" e x p ~ ) d L ) d ) ~ ,  
0 0 0 

(4. '7) 

U 1 

or 

= 2L [~1, ~oao], w 1 = - - 2 L  [~1, %Uo~to],- 01 = (t - - P ) L  [~, (UoUl)~,"] 
01 - -  0 .5d  ] / ~  (t - -  P )  exp  ( - -  ~ )  G (~) -k (t - -  P )  L [)~, (UoUl)~"], 

d = i- u~ (~) d;~. 

oo 

0 

(4. 8) 

The coefficients cf and c d are determined from (3. 21), (3.22), in which ~o = ~(ho), where ho :~ 1 + a(O-Uo~). 
The Stanton number in the case of flow over a surface with heat transfer and the enthalpy of the gas at a thermally in- 

sulated surface are found using (4. 7) and (4. 8): 

~g V - g ( l - P )  ~t~d V - ~ ( l - P )  ] 
= %~ I-- T~_~o- -- l+~_hO + .... j s (4.9) 

hw ~  I + a  [1 - -  g ~ (t - -  P ) l  - -  0 . 5 e t a d  ] / ~  (l - -  P ) .  (4.10) 

In deriving (4. 8)-(4. 10) we used the equality 

oo oo 

d = (Uo lX" a = I  oUlG " 
0 0 

_ - --> 0, we have d < 0. Thus, if P < 1, the magnetic  field leads to an increase in heat Since u0 < 0, u 1 < 0, G" 
flux, while P > 1 it leads to a decrease. Similarly, when a magnet ic  field is applied the enthalpy of the gas at a ther- 

mally insulated surface decreases if P > I and increases if P < I. 

It is of interest to compare the results obtained in w 3, 4 with the results of [9, 5] in which studies were made of 

the stationary MHD boundary layer on a flat plate to which a transverse magnetic field was applied. In [9], by numeri- 

cal integration of the boundary layer equations for the case P = i, constant p, p, and k, and an exponential dependence 



of conductivi ty on temperature  Rossow found that a magnet ic  field leads to a decrease in friction drag and heat  flux and 
to an increase in total  drag. Upon development  of a boundary layer, in accordance with w 3, when P = 1 the magnet ic  
field acts on the friction and total  drag in the same sense, but does not affect the heat  flux to the surface. In [5] Bush 
numerica l ly  integrated the equations of a compressible boundary layer  on a flat  Plate to which he appl ied a transverse 
magnet ic  field decreasing from the leading edge t / ] / x .  It was assumed that the pla te  was located in a flow of air 
and that  P = 0. 70, while a l lowance was made for the variat ion of p, P2 and 6. Calculat ions showed that a magnet ic  
field leads to a decrease in friction and hea t  flux. Upon  development  of a boundary layer,  in accordance with the re- 
suits of w 4, when P = 0.70 < 1 the magnet ic  field reduces friction but increases the heat  flux. 

w 5. Let the magnet ic  field be fixed re la t ive  to the oncoming flow (plate moving in an external  magnet ic  field). 
In this case e z = -1 .  We put e x = 0, r = 1, P = l; system (2. 19) assumes the form 

Ou ~ 02u ~ O0 0~0 
O~ "= vr ~ -F ecp (1 ~ u ~ - -  ~wQ), ~ = v ~  ~ -4-2eq? (1 - -  u ~ - -  ~w ~ , 

(5. !) 
Ow ~ 02W ~ 

0~ - v ~ - - ~ ( P [ ~ ( l  u ~ 1 7 6  

Note that in this case, in order that the flow at infinity be uniform, it is not necessary to require that r ~ 0 as 
y --~ ~ .  Therefore system (5. 1) with boundary conditions (2. 20) can be used not only  to describe the motion of a plate 
in an in i t ia l ly  nonconducting gas, when the conduct ivi ty in the boundary layer  increases as a resul t  of heating due to 
friction, but also to describe the motion of a p la te  in a fluid of constant conductivity.  

We shall seek the solution of system (5.1) in the form of series (3.5) and (4. 2). Substituting these series into (5. 1), 
for the zero approximat ion (u0 and 00) we get  gqs. (3. 9) and (4. 4) whose solutions are given by (4. 7) (in (4. 4) and 
(4. 7) we must put P :, 1, ~ = X), and for the first approximation the equations 

u l"  + 2TlUx' - -  4 u l  = - -  4 %  E r r ) l ,  

wl" -4- 2TIW 1' 4w 1 = 4%~ o E r f  ~1, 

0i"  -F 2Ti01' - - 4 0 1  = ~ 8 %  E r f  ~1, 

ul (0) = O, ul ( ~ )  = 0 (6. 2) 
wl (0) = O, wl ( ~ )  = 0 ,  (5.a) 
o ~ ( o ) = o  or o i ' ( 0 ) = 0 ,  

01 (cr = O. (5.4) 

We reca l l  that here (Po ---- q) (ho), ~o = ~ (ho), where h o ----- t -~- o~ (0 o - -  no2). The solution of these equations 
has the form 

u 1 = - -  2L [~1, % E r f  ~1], w 1 = 2L [~1, %[~o E r r  ~1], 

or 
01 = - -  4 L  [~l, % E r f  ~l] 

0~ = 0 . 5 m  1 / ~  e x p  ( - -  TI 2) G (~l) - -  4L [~l, % E r r  ~l] 

0 

(5. 5) 

From (5. 5), using (3. 19), we find that u 1 > 0, w 1 -~< 0 .  The friction drag, Stanton number,  and the enthalpy 

of the gas at  an insulated wall  are equal  to 

2Vco 
c t = - -  (n tvo~)- ' /2  (1 -+- 0 .5  V ' n m e t  - F .  �9 . )  

uo o 
(5. e) 

= + c a ,  + .) S 
uco t --1- a - -  hw ~ " " 

h w  ~ ~-- I - ~  a Jr- 0 . 5 m ~  V - ~ e t  ,Jr- . . . 

(5. 7) 

(5. 8) 

Since G >~ 0, % >~ 0,  E r f  T 1 "~ 0, from (5. 6) and (5. 7) it  follows that a magnet ic  field leads to an increase 

in fr ict ion drag and heat  flux. Note that  in the case of a two-dimensional  stat ionary boundary layer  on a semi- inf in i te  

p la te  moving in an external  magne t ic  f ield,  the friction drag and heat  flux due to the ac t ion of the magnet ic  field at 
P = 1 vary in the same sense [9, 10]. 
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When r = const (r g. ,  6, p, and $ are constant), we have 

2 ( v ~ / V '  c! = ~ (t -~- et~o -]- . . . ) ,  u~-~edo'{Erf~l--exp(--~l~)G(~l)}, 
~oo \-M ] 

�9 ( 2aster~ ~ q - ' ' ' )  ( m=2n-'/'O?~ S v.___~ (~tt~,oo)_,/2 t -b 1 + a -  h w 
btO0 . 
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